Global nonconvex optimization with Gurobi

Robert Luce

OLC workshop, Princeton, June 2024
What is MIQCP?

We consider the problem

\[
\min_{x \in \mathbb{R}^n} \quad x^T Q_0 x + c^T x \\
\text{s.t.} \quad Ax = b \\
\quad x^T Q_k x + p_k^T x \geq d_k, \quad k = 1, \ldots, q \\
\quad l \leq x \leq u \\
\quad x_i \in \mathbb{Z}, \quad i \in I
\]

with \(A \in \mathbb{R}^{m,n} \), and all \(Q_k \in \mathbb{R}^{n \times n} \) symmetric.

- Our goal: find a provably global optimal solution.
- Our solution strategy: Branch-and-bound (BnB).
Branch-and-bound, relaxations
Basic idea of BnB for MIP

Let’s forget about all quadratic constraints, think plain MIP!

- Basic idea: Forget integrality constraints, enlarge the feasible space ("relaxation")
 - This is now a convex problem! Denote optimal solution by x^*.
- If all $\{x^*_i \mid i \in I\}$ are integral: done
- Otherwise: Pick fractional x^*_i, create two child problems by enforcing
 - $x_i \leq \lfloor x^*_i \rfloor$ in one branch, and
 - $x_i \geq \lceil x^*_i \rceil$ in the other branch.
 - Recurse on both subproblems.
 - Stop when relaxation objective value exceeds objective value of a known solution.

- Naive algorithm may implicitly enumerate all integer points.
- Not all subtrees need to be explored though.
- Practical implementations of this idea are surprisingly effective.
- A lot of algorithmic machinery is needed.
Relaxations for nonconvex quadratic constraints

Goal: BnB subproblems must be solvable efficiently.

- **Ingredient 1**: Break quadratic constraints into a set of elementary, bilinear constraints $z = xy$.
- **Ingredient 2**: Replace such bilinear constraints by their convex envelope.
- **Ingredient 3**: Branch not only on integer variables, but also on variables that tighten the envelope.
Breaking apart quadratic constraints

Consider the quadratic constraint

\[3x_1^2 - 7x_1x_2 + 2x_1x_3 - x_2^2 + 3x_2x_3 - 5x_3^2 = 12. \]

Introduce auxiliary variables and bilinear constraints:

\[
\begin{align*}
 z_{11} &= x_1^2 \\
 z_{12} &= x_1x_2 \\
 z_{13} &= x_1x_3 \\
 z_{22} &= x_2^2 \\
 z_{23} &= x_2x_3 \\
 z_{33} &= x_3^2
\end{align*}
\]

And add replace the quadratic constraint by a linear one:

\[3z_{11} - 7z_{12} + 2z_{13} - z_{22} + 3z_{23} - 5z_{33} = 12. \]
McCormick relaxation for $z = xy$

$-z + xy = 0$

$-z + l_x y + l_y x \leq l_x l_y$

$-z + u_x y + u_y x \leq u_x u_y$

$-z + u_x y + l_y x \geq u_x l_y$

$-z + l_x y + u_y x \geq l_x u_y$
McCormick relaxation, cont’d

\[-z + l_x y + l_y x \leq l_x l_y\]
\[-z + u_x y + u_y x \leq u_x u_y\]
\[-z + u_x y + l_y x \geq u_x l_y\]
\[-z + l_x y + u_y x \geq l_x u_y\]

- Inequalities depend on the *bounds* of x, y (only!).
- The smaller the domains, the better approximation from the envelope.
- Picking a variable to branch on balances:
 - Total reduction in envelope volume.
 - Number of participations in violated bilinear constraints.
- Picking a branching value for the variable considers:
 - Midpoint of the variable’s local domain.
 - Variable value in the current relaxation.
A useful cutting plane
Simplified setup

We consider the problem

\[
\min_{x \in \mathbb{R}^n} x^T Q x + c^T x \\
\text{s.t. } Ax = b \\
\quad x \geq 0 \\
\quad x_I \in \mathbb{Z}
\]

- We are interested in the case where \(x^T Q x \) is nonconvex.
- Problem: Relaxing \(x_I \in \mathbb{Z} \) gives us only a nonconvex continuous problem.
- Relaxing the quadratic function as just seen gives us a convex relaxation.
McCormick relaxation as extended formulation

For notational convenience, we will rephrase the McCormick relaxation:

- For each appearing quadratic term $x_i x_j$ introduce an auxiliary variable X_{ij}.
- Add some polyhedral constraints $(x, X) \in S$ that connect $x_i x_j$ with X_{ij} (linear envelope of $x_i x_j$).
- The envelope becomes tighter in the course of branching, bound changes for x_i, x_j propagate to bound changes for X_{ij}.

Challenge: We may need to branch many times until the relaxation solution satisfies

$$xx^T = X.$$
What is a cutting plane?

- Let $\mathcal{F} \subset \mathbb{R}^n$ be the feasible set of the original optimization problem.
- Let $\mathcal{R} \subset \mathbb{R}^n$ be the feasible set of some relaxation during BnB.
- Assume that the optimal relaxation solution $(x^*, X^*) \in \mathcal{R}$ satisfies $x^*x^T \neq X^*$.
What is a cutting plane?

- Let $\mathcal{F} \subset \mathbb{R}^n$ be the feasible set of the original optimization problem.
- Let $\mathcal{R} \subset \mathbb{R}^n$ be the feasible set of some relaxation during BnB.
- Assume that the optimal relaxation solution $(x^*, X^*) \in \mathcal{R}$ satisfies $x^* x^*^T \neq X^*$.

Can we find a linear inequality

$$d^T x + \text{tr}(DX) \leq g, \quad d \in \mathbb{R}^n, D \in \mathbb{R}^{n,n}, g \in \mathbb{R}$$

such that

- $d^T x^* + \text{tr}(DX^*) > g$, but
- $\mathcal{F} \cap \{x \in \mathbb{R}^n \mid d^T x + \text{tr}(DX) \leq g\} = \mathcal{F}$?
What is a cutting plane?

- Let $\mathcal{F} \subset \mathbb{R}^n$ be the feasible set of the original optimization problem.
- Let $\mathcal{R} \subset \mathbb{R}^n$ be the feasible set of some relaxation during BnB.
- Assume that the optimal relaxation solution $(x^*, X^*) \in \mathcal{R}$ satisfies $x^* x^T \neq X^*$.

Can we find a linear inequality

$$d^T x + \text{tr}(DX) \leq g,$$

such that

- $d^T x^* + \text{tr}(DX^*) > g$, but
- $\mathcal{F} \cap \{x \in \mathbb{R}^n \mid d^T x + \text{tr}(DX) \leq g\} = \mathcal{F}$?

Then we can get a better relaxation through $\mathcal{R} \cap \{x \in \mathbb{R}^n \mid d^T x + \text{tr}(DX) \leq g\}$!
Cuts from SDP outer approximation 1

We will use the $xx^T = X$ to derive globally valid cutting planes for the relaxed extended formulation.
Cuts from SDP outer approximation 1

We will use the $xx^T = X$ to derive globally valid cutting planes for the relaxed extended formulation.
For any $x \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times n}$ We have

$$
xx^T = X \Rightarrow xx^T \preceq X
\Rightarrow 0 \preceq X - xx^T
\Rightarrow 0 \preceq \begin{bmatrix} 1 & 0 \\ 0 & X - xx^T \end{bmatrix}
\Rightarrow 0 \preceq \begin{bmatrix} 1 & 0 \\ x & I \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & X - xx^T \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix}
\Rightarrow 0 \preceq \begin{bmatrix} 1 & xx^T \\ x & X \end{bmatrix} =: \hat{X}
$$

How do we derive cuts from $0 \preceq \hat{X}$?
Cuts from outer approximation 2

Recall

\[
\begin{bmatrix}
1 & x^T \\
x & X
\end{bmatrix} =: \hat{X}
\]

From the variational characterization

\[
\hat{X} \succeq 0 \iff \mathbf{v}^T \hat{X} \mathbf{v} \geq 0 \quad \forall \mathbf{v} \in \mathbb{R}^n
\]

we see that a solution \((x^*, X^*)\) for the relaxation is cut off by the \textit{linear} cutting plane \(\mathbf{v}^T \hat{X} \mathbf{v} \geq 0\) by any \(\mathbf{v} \in \mathbb{R}^n\) satisfying

\[
\mathbf{v}^T \hat{X}^* \mathbf{v} < 0.
\]
Characterization of cut-defining vectors

- Let \((\lambda, v)\) be a normalized eigenpair with \(\lambda < 0\), then

\[v^T \hat{X}^* v = \lambda v^T v = \lambda < 0. \]

- More generally, let \(\mathcal{U} := \text{span}\{v_1, \ldots, v_s\}\) be the subspace generated from eigenvectors corresponding to all negative eigenvalues. Then any \(v \in \mathcal{U}\) defines a cut.

- Reverse: any cut-defining \(v\) satisfies \(\text{proj}_{\mathcal{U}}(v) \neq 0\)

- Even better: If \(v \notin \mathcal{U}\), and \(w = \text{proj}_{\mathcal{U}}(v)\), then \(w^T \hat{X}^* w \leq v^T \hat{X} v\).

Conclusion: \(\mathcal{U}\) is the right place to look for cuts.

Problems: \(\mathcal{U}\) is expensive to compute for large \(n\), and the number of nonzeros in the cut are \(\frac{n(n+1)}{2} + n\).
Cuts from submatrices

For $\mathcal{I} \subseteq [n]$ we define the submatrix of \hat{X} induced by \mathcal{I} by

$$
\hat{X}_\mathcal{I} := \begin{bmatrix} x(\mathcal{I})^T & X(\mathcal{I}, \mathcal{I}) \end{bmatrix}.
$$

Passing to subsets is a way around computational burden, but since

$$
\min_{\mathbf{v} \in \mathbb{R}^n} \mathbf{v}^T \hat{X} \mathbf{v} \leq \min_{\mathbf{v} \in \text{span}\{e_i\}_{i \in \mathcal{I}}} \mathbf{v}^T \hat{X} \mathbf{v} = \min_{\mathbf{v} \in \mathbb{R}^{\mathcal{I}}} \mathbf{v}^T \hat{X}_\mathcal{I} \mathbf{v}
$$

a cut may be quite a bit weaker than the best possible cut on \hat{X}.
Sparse extended formulations

Typically we will not add *all* the variables X_{ij} in our extended formulation. For simplicity assume that we have added all variables corresponding to the incidence graph $G_Q = (V, E) := G(Q)$ though.

Simple heuristic 1:
▶ Pick any “small” clique C in G_Q.
▶ Apply cut heuristic to $G_Q[C]$.

Simple heuristic 2:
▶ Compute a chordal completion C of G_Q.
▶ For each maximal clique of C (that is still small enough...) fill entries in X^* by $X^*_{ij} = X_{ij}$ if $(i, j) \in E$ and relax “missing” variables in the cut by an upper bound.
▶ If cut still cuts off (x^*, X^*), take it!
Sparse extended formulations

Typically we will not add all the variables X_{ij} in our extended formulation. For simplicity assume that we have added all variables corresponding to the incidence graph $G_Q = (V, E) := G(Q)$ though.

Simple heuristic 1:

- Pick any "small" clique C in G_Q.
- Apply cut heuristic to $G_Q[C]$.

Simple heuristic 2:

- Compute a chordal completion C of G_Q.
- For each maximal clique of C (that is still small enough...) fill entries in X^*_{ij} by $X^*_{ij} = X_{ij}$ if $(i, j) \in E$, $x^*_{i} x^*_{j}$ otherwise, and relax “missing” variables in the cut by an upper bound.
- If cut still cuts off (x^*, X^*), take it!
Sparse extended formulations

Typically we will not add all the variables X_{ij} in our extended formulation. For simplicity assume that we have added all variables corresponding to the incidence graph $G_Q = (V, E) := G(Q)$ though.

Simple heuristic 1:

▶ Pick any "small" clique C in G_Q.
▶ Apply cut heuristic to $G_Q[C]$.

Simple heuristic 2:

▶ Compute a chordal completion C of G_Q.
▶ For each maximal clique of C (that is still small enough...) fill entries in X^* by

$$[X^*]_{ij} = \begin{cases}
X^*_{ij} & \text{if } (i, j) \in E \\
x^*_i x^*_j & \text{otherwise},
\end{cases}$$

and relax “missing” variables in the cut by an upper bound.
▶ If cut still cuts off (x^*, X^*), take it!
Eigenspace guided submatrix selection

Now consider the setting where G_Q is large and sparse. We can compute an s-dimensional approximation to \mathcal{U} (e.g., Lanczos, Krylov-Schur).

▶ Basic operation: Matrix vector products with \hat{X}^*, cost $\mathcal{O}(n + |E|)$ each, and a few eigensolves of size s.

▶ *If the method converges*, we obtain a $U \in \mathbb{R}^{n,s}$ with orthonormal columns, such that $\text{span}(U) \subseteq \mathcal{U}$. (Or a certificate that no cuts can be separated.)
Now consider the setting where G_Q is large and sparse. We can compute an s-dimensional approximation to U (e.g., Lanczos, Krylov-Schur).

- Basic operation: Matrix vector products with \hat{X}^*, cost $\mathcal{O}(n + |E|)$ each, and a few eigensolves of size s.
- If the method converges, we obtain a $U \in \mathbb{R}^{n,s}$ with orthonormal columns, such that $\text{span}(U) \subseteq U$. (Or a certificate that no cuts can be separated.)

With U at hand, we could:

1. Generate dense cuts as before.
2. Project U on a matrix with smaller support, resulting in sparse cuts.
Interlude 1: NMF

A nasty nonconvex quadratic problem
NMF is a structured, low-rank matrix factorization

Given $X \in \mathbb{R}^{m,n}_+$, find

- “small” $r \in \mathbb{N}$,
- $W \in \mathbb{R}^{m,r}_+$,
- $H \in \mathbb{R}^{r,n}_+$

such that $X = WH$ (or $X \approx WH$). W, H often decompose X while preserving interpretability (face pictures / facial features, measured spectrum of a mixture / spectral signatures of species, etc.)

Given an NMF $X = WH$ of rank r, is it unique

- up to permutation $WH = (WP^T)(PH)$, and
- up to nonnegative, diagonal scaling $WH = (WD^{-1})(DH)$?

Typically all questions one may want to ask around NMF result in NP-hard optimization problems.
The sufficiently scattered condition (SSC)1

Let $H \in \mathbb{R}_{+}^{r \times n}$ and

$$cone(H) = \{x \mid x = Hy, y \geq 0\}$$

$$cone(H)^* = \{x \mid H^T x \geq 0\}$$

$$C = \{x \in \mathbb{R}^r \mid e^T x \geq \sqrt{r - 1}\|x\|_2\} \subseteq \mathbb{R}_{+}^r$$

$$C^* = \{x \in \mathbb{R}^r \mid e^T x \geq \|x\|_2\} \supseteq \mathbb{R}_{+}^r$$

Then H satisfies the SCC if

SSC1 $C \subseteq cone(H)$

SSC2 $cone(H)^* \cap \{x \mid e^T x = \|x\|_2\} \subseteq \bigcup_i \text{span}\{e_i\}$

Theorem

*Let $X = WH$ and NMF where W^T and H satisfy the SSC. Then this NMF is unique up to permutation and scaling.***

Checking the SSC, computationally

How do we check a given \(H \in \mathbb{R}_{+}^{r,n} \) for the SCC? A few subtleties set aside\(^2\), Gurobi can solve

\[
\begin{align*}
\max_x \quad & \|x\|_2 \\
\text{s.t.} \quad & e^T x = 1 \\
& H^T x \geq 0
\end{align*}
\]

If the optimal objective value is strictly greater than one, then \(H \) does not satisfy SSC1. Further, the set of optimal solutions must be equal to \(\{e_i\}_{i=1}^{r} \) – a condition Gurobi can check by enumerating the optimal solutions.

Going nonlinear in BnB
Relaxations for nonlinear constraints

Consider the constraint

\[f(\theta) := \sqrt{1 + \theta^2} + \ln(\theta + \sqrt{1 + \theta^2}) \leq 2, \quad \theta \geq 0 \]

Goal: BnB subproblems must be solvable efficiently.

- **Ingredient 1:** Decompose \(f(\theta) \leq 2 \) into a set of \textit{atomic} nonlinear constraints \(y_k = f_k(x) \).
- **Ingredient 2:** Replace epigraph of each such atomic constraint by its convex envelope.
- **Ingredient 3:** Branch not only on integer variables, but also on variables that tighten the envelopes.
Decomposing a nonlinear constraint

\[f(\theta) := \sqrt{1 + \theta^2} + \ln \left(\theta + \sqrt{1 + \theta^2} \right) \leq 2, \quad \theta \geq 0 \]

Introduce auxiliary variables \(y_k \) and the atomic constraints:

\[
\begin{align*}
 y_1 &= 1 + \theta^2 \\
 y_2 &= \sqrt{y_1} \\
 y_3 &= \theta + y_2 \\
 y_4 &= \ln y_3
\end{align*}
\]

And replace the original nonlinear constraint by a linear one:

\[y_2 + y_4 \leq 2 \]

We only need to deal with these atomic \(y = g(x) \) constraints in BnB.
From bilinear constraints to $y = f(x)$

- Goal: Find a convex relaxation to the epigraph of $f(x) - y = 0$.
- Basic technique: Polyhedral envelopes
 - Fixed number of hyperplanes
 - Upper and/or lower envelope (as needed)
 - Adaptive adjustment of envelope coefficients
- As branching reduces the domain of x, the relaxation becomes tighter
- Hyperplane generation takes into account the specific properties of each atomic function f
- In effect this is *roughly* equivalent to a dynamic PWL approximation in the BnB tree traversal

All this becomes is pretty heavy in notation if spelled out in detail, we’ll just give a few examples
An easy case

If \(\sin \) is convex within the bounds of \(x \) ...

- Upper envelope is given by secant through \(f(\text{lb}) \) and \(f(\text{ub}) \)
- Lower envelope constructed by tangents to \(\sin \), viz. \(\sin(x_0) + \frac{d}{dx}\sin(x_0)(x - x_0) \)
- Resulting hyperplanes added to LP
- Shaded in red: Relaxation of the epigraph of \(f(x) - y = 0 \)

- Similar if \(\sin \) is concave on the domain of \(x \)
- Adding more tangents at various points improves the relaxation
Neither convex, concave

- If \sin is neither convex nor concave on the domain of x...
 - Lower envelope
 - Compute leftmost solution x_0 to
 \[
 \frac{d}{dx} \sin(x) = \frac{\sin(x) - \sin(lb)}{x - lb}
 \]
 - Computed x_0 defines one tangent
 - Remaining part is convex, use some tangent
 - Similar: Upper envelope
 - Compute rightmost solution x_1 to
 \[
 \frac{d}{dx} \sin(x) = \frac{\sin(ub) - \sin(x)}{ub - x}
 \]
 - Remaining part is concave, use some tangent
“Large” domains

- Not much to get from the relaxation if x’s domain is large
- Again, branching on x tightens the relaxation quickly!
Handling poles

- Example: $f(x) = x^{-2}$
- If no bounds on x are given, the only possible convex relaxation of $f(x) - y = 0$ is $y \geq 0$
Handling poles

- Example: $f(x) = x^{-2}$
- We have bounds on x with $lb < 0 < ub$
- Lower envelope
 - Unique tangent with $x_0 > 0$ that passes $f(lb)$
- Upper envelope
 - Only trivial envelope is valid
 - Branching at the pole needed
Handling poles

- Example: \(f(x) = x^{-2} \)
- We have bounds on \(x \) with \(0 < lb < ub \)
- Lower envelope
 - Convex, use tangent(s) at will
- Upper envelope
 - Use secant between \(f(lb) \) and \(f(ub) \)
- Caution if \(lb \) is close to pole
 - Coefficients in tangents/secant become very large!
- Caution if \(ub \) is large
 - Coefficients in tangents/secant become very small
Branching and convergence

Branching on the argument variable x “improves” the relaxation; pointwise quadratic convergence in convex/concave domains
Our direction is set

- Gurobi 9: Extend BnB to nonconvex quadratic functions
- Gurobi 9,10: Computes static PWL approximations to atomic functions $f(x)$
 - Atomic functions used in heuristics
- Gurobi 11: Implements dynamic envelopes for atomic functions $f(x)$, nonlinear constraints must be given already decomposed
- Gurobi 12 (Q4/24): Will (hopefully) accept any nonlinear constraint
 - Automatically decomposition for BnB
 - Original formulation used in heuristics
Interlude 2: Trained predictors as constraints
From linear constraints to trained predictors

Think about $x \in \mathbb{R}^n$ as *input* variables, and $y \in \mathbb{R}^m$ as *output* variables.

$$\min_{x,y} \ f(x, y)$$

s.t. $Ax = y$

plus bounds, integrality of any x_i, y_j

So the input and output are linearly related through A.

GUROBI OPTIMIZATION
From linear constraints to trained predictors

Think about $x \in \mathbb{R}^n$ as *input* variables, and $y \in \mathbb{R}^m$ as *output* variables.

$$\min_{x, y} f(x, y)$$

s.t. $Ax = y$

plus bounds, integrality of any x_i, y_j

So the input and output are linearly related through A. Let’s replace A by a trained predictor $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$:

$$\min_{x, y} f(x, y)$$

s.t. $g(x) = y$

plus bounds, integrality of any x_i, y_j
Meet Gurobi Machine Learning

- Gurobi ML is a Python package to formulate trained predictors in Gurobi models
- Beyond linear regression most ML models rely on some nonlinear function:
 1. Sigmoid/Logistic function: \(\sigma(z) = \frac{1}{1 + e^{-z}} \)
 2. \(\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1 - e^{-2x}}{1 + e^{-2x}} \)
 3. SoftMax: \(\sigma(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}} \) for \(i = 1, 2, \ldots, K \)
 4. ReLU: \(y = \max(0, x) \)
 5. Discrete choice for decision trees (Piecewise Constant functions)
- Currently Gurobi ML can formulate models that use ReLU and Logistic

https://github.com/Gurobi/gurobi-machinelearning
Advantages of Gurobi 11’s dynamic approach

- Gurobi 10: Logistic regression models solved through a static PWL approximation
- Gurobi 11: BnB approach and nonlinear barrier
- Better Solutions Faster. E.g. Janos model (Bergman et.al. 2020):
 - Solution with static approach violates function by 3.0434×10^{-4}
 - Solution with dynamic approach violates by 6.46901614×10^{-7}
 - Running time similar (£1 sec.)
 - Requiring a static PWL approximation with same accuracy, builds prohibitive model solved in 700 sec.
- Using this can do add-hoc models for SoftMax. On an example of adversarial ML
 - Gurobi 11 is $13\times$ faster
 - Significantly less violated solutions
Advantages of Gurobi 12’s nonlinear function support

- Nonlinear functions can be handled better:
 - We know the function as whole (not just the decomposition!), better error control
 - Capitalize on nonlinear barrier to get locally optimal solutions
- It also becomes possible to write an entire neural network within one single expression:
 - Advantage for global optimality unclear (the spatial BnB algorithm will still need to use a decomposition)
 - But barrier can be used to get locally optimal solutions for much larger networks
Conclusions

- Nonconvex global optimization is fun
- Integration in a grown BnB-MIP-framework requires touching a lot of wheels, big and small
- Can we repeat the success story of MIP?
Conclusions

- Nonconvex global optimization is fun
- Integration in a grown BnB-MIP-framework requires touching a lot of wheels, big and small
- Can we repeat the success story of MIP?

Thanks!